You're asking about **[3-[(2-chlorophenoxy)methyl]phenyl]-(2,6-dimethyl-4-morpholinyl)methanone**. This is a complex chemical name, and without more context, it's difficult to say definitively what the compound is and why it's important. However, I can give you some insights based on the structure and common uses of similar compounds:
**Breaking down the name:**
* **[3-[(2-chlorophenoxy)methyl]phenyl]**: This part describes a phenyl ring (a six-carbon ring with alternating single and double bonds) with a specific substitution pattern. It has a 2-chlorophenoxy group attached to the 3rd position of the phenyl ring.
* **-(2,6-dimethyl-4-morpholinyl)methanone**: This part describes a ketone group (C=O) connected to a morpholine ring. The morpholine ring has two methyl groups at positions 2 and 6.
**Possible uses:**
Given the structure, this compound could be a potential:
* **Pharmaceutical compound:** The presence of a phenyl ring and a morpholine ring, along with other functional groups, suggests it could be active against a range of biological targets. It might possess activity as an **anti-inflammatory, analgesic, anti-anxiety, or anti-convulsant**, or be involved in **modulation of neurotransmitter systems**.
* **Agrochemical:** Some compounds with similar structures have shown activity as **herbicides, insecticides, or fungicides**.
* **Material science:** The aromatic structure and presence of functional groups could make it useful for creating polymers or other materials with specific properties.
**Importance for research:**
* **Lead optimization:** The compound might be a lead compound for further development into a drug or agrochemical. Researchers might modify its structure to improve its activity, potency, or selectivity.
* **Structure-activity relationship (SAR) studies:** Understanding how modifications to the structure of this compound affect its activity can provide valuable insights into the design of new, more effective compounds.
* **Mechanism of action studies:** Determining how this compound interacts with its biological target(s) is crucial for understanding its therapeutic potential and for guiding further development.
**Important Note:** To understand the exact importance of this specific compound for research, you need more context.
* **Where did you encounter this name?** Was it in a scientific paper, a patent application, or elsewhere?
* **What specific field of research are you interested in?** Knowing this can help narrow down the potential uses and importance of the compound.
I hope this information helps!
ID Source | ID |
---|---|
PubMed CID | 2941437 |
CHEMBL ID | 1372279 |
CHEBI ID | 117116 |
Synonym |
---|
HMS2607L19 |
4-{3-[(2-chlorophenoxy)methyl]benzoyl}-2,6-dimethylmorpholine |
smr000292527 |
MLS000685156 |
CHEBI:117116 |
AKOS001682565 |
[3-[(2-chlorophenoxy)methyl]phenyl]-(2,6-dimethylmorpholin-4-yl)methanone |
STK915307 |
{3-[(2-chlorophenoxy)methyl]phenyl}(2,6-dimethylmorpholin-4-yl)methanone |
AKOS022008903 |
CHEMBL1372279 |
Q27203743 |
[3-[(2-chlorophenoxy)methyl]phenyl]-(2,6-dimethyl-4-morpholinyl)methanone |
Class | Description |
---|---|
morpholines | Any compound containing morpholine as part of its structure. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 15.1014 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 3.7586 | 0.0041 | 10.8903 | 31.5287 | AID504466; AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 21.8528 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Smad3 | Homo sapiens (human) | Potency | 35.4813 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
NPC intracellular cholesterol transporter 1 precursor | Homo sapiens (human) | Potency | 3.5481 | 0.0126 | 2.4518 | 25.0177 | AID485313 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 16.3601 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
parathyroid hormone/parathyroid hormone-related peptide receptor precursor | Homo sapiens (human) | Potency | 125.8920 | 3.5481 | 19.5427 | 44.6684 | AID743266 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 1.2589 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
geminin | Homo sapiens (human) | Potency | 20.5962 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 11.2202 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 3.9811 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |